

MAX-PLANCK-GESELLSCHAFT

Abstract

We present an intrinsically motivated agent that learns how to control the environment in the fastest possible manner by optimizing learning progress.

It learns what can be controlled, how to allocate time and attention and the relations between objects using surprise based motivation. The effectiveness of our method is demonstrated in a synthetic as well as a robotic manipulation environment yielding considerably improved performance and smaller sample complexity.

In a nutshell, our work combines several task-level planning agent structures (backtracking search on task graph, probabilistic road-maps, allocation of search efforts) with intrinsic motivation to achieve learning from scratch.

Contributions

Autonomously learning to solve challenging control problems

- using intrinsic motivations (IM):
- -maximizing controllability
- learning progress
- surprise
- using several task-level planning ideas:
- —sub-task graph
- backtracking search on task graph
- goal regression
- allocation of search efforts

Result: Learning from scratch to control environment and to acquire skills

Setup and Environments

Controllability:

Purpose/goal of agent: Gain control over coordinates of observation space. Reaching arbitrary points / goal states

Basic tool-use/object manipulation environment

Observations: Object/agent positions.

Self-posed Tasks: Manipulating coordinates of observations to a goal.

Example: Change position of tool to a goal position

Objects:

Tool can be picked up immediately, **50% object** can be picked up only in 50% of the trials Heavy object can only picked up when in possession of the tool **Random object** can not be manipulated by the agent, moves randomly

Robotic object manipulation environment

Observations: Position of gripper, hook and box. Self-posed Tasks: Manipulating coordinates of observations to a goal **Example:** Change position of box to a goal position **Box** Can only be moved with the help of the hook

Control What You Can: Intrinsically Motivated Task-Planning Agent

Sebastian Blaes, Marin Vlastelica Pogančić, Jia-Jie Zhu, Georg Martius

CWYC w oracle: Upper baseline for our method with hand-crafted (optimal) task planner and sub-goal generators

HIRO: Hierarchical RL baseline

ICM-(S/E): Intrinsically motivated RL agent baselines

SAC: Vanilla soft actor-critic algorithm

See the related work & references box for additional information regarding the hierarchical and intrinsically motivated baselines.

Robotic object manipulation environment

DDPG+HER: RL baseline without intrinsic motivation or hierarchical structure, the other baselines are the same as in the upper plots.

(surprise) in agent's internal forward model. (right) Task and object relations can already be inferred from a handful of surprising events and successful task transitions (cf. learned task graph and learned object relations)

-1S

		Math	
		(2) Task selector	
$Q_i(t) = Q_i(t-1) + \alpha \cdot$	$(r_i(t) - Q_i(t-1))$	for all tasks i	Gess
with $r = \alpha + \beta \max(\alpha)$	$(r_1(t)) \in q_1(t-1)),$		
with $r_i = p_i + p \max_t(s)$	$\operatorname{suppise}_i(v))$		
		(3) Task Planner	
$B_{i,i} = Q_{i,i} / \sum_k Q_{i,k}$			surprise
with $Q_{i,i} = \langle 1 - T_{i,i} / T^{n} \rangle$	$max + \beta \max_{i} (surprise_{i})$	$(t))\rangle$	Ded the second s
$T_{i,j}$ is the runtime for so	lying task i by doing t	task <i>i</i> before T^{\max} is the	one trail
	(5)	Sub-goal generator	
$\mathcal{L}_{i,j} = \min_{\omega} \sum_{k=1}^{n} \ G_{i,j}\ $	$(\omega, s_k) - r_{i,j}(s_k) \ ^2$		
with $G_{i,j}(s) = \exp\left(-\gamma\right)$	$\sum_{k=1}^n \sum_{l=k+1}^n \ \omega_{kl}^1 s_k -$	$+ \omega_{kl}^2 s_l + \omega_{kl}^3 \ ^2 $	
and $r_{i,j}(s_t) = \min(1, successful success$	$\mathbf{c}\mathbf{c}_i \cdot \Gamma_{i,j}(s_t) + surprise$	$\mathbf{e}_i(t))$	
$\Gamma_{i,j}(s)$ is 1 if the agent d	lecides to switch from	i task j to i in state s a	and zero otherwise
	Related	VVORK & Refe	rences
	Intrinsic motivation	Computati	onal methods
h-DQN [4]	reaching subgoals	+ surprise task-leve HRL, DQN	I planning, relational attention
IMGEP [3]	learning progress	memory-ba	ased
IMGEP [3] CURIOUS [1]	learning progress learning progress	memory-ba DDPG, HE	ased ER, E-UVFA PC like) Pl
IMGEP [3] CURIOUS [1] SAC-X [6] Relational RI [8]	learning progress learning progress auxiliary task	memory-ba DDPG, HE HRL, (DD relation ne	ased ER, E-UVFA PG-like) PI + IMPALA
IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5]	learning progress learning progress auxiliary task - prediction error	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM	ased ER, E-UVFA PG-like) PI et, IMPALA
IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2]	learning progress learning progress auxiliary task - prediction error adversarial goal	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF	ased ER, E-UVFA PG-like) PI t, IMPALA
IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7]	learning progress learning progress auxiliary task - prediction error adversarial goal self-play	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob,	ased ER, E-UVFA PG-like) PI et, IMPALA PO , TRPO, REINFORCE
IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References	learning progress learning progress auxiliary task - prediction error adversarial goal self-play	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob,	ased ER, E-UVFA PG-like) Pl t, IMPALA PO , TRPO, REINFORCE
IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeye learning. In International Confer	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICN	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, ML'19), pages 1331–1340, 2019.	ased ER, E-UVFA PG-like) PI et, IMPALA PO , TRPO, REINFORCE
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeye learning. In <i>International Conferences</i> [2] Carlos Florensa, David Held, Xim Machine Learning (IMCL'18), page	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM hyang Geng, and Pieter Abbeel ages 1514–1523, 2018.	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI ML'19), pages 1331–1340, 2019. . Automatic goal generation for r	ased ER, E-UVFA PG-like) Pl et, IMPALA PO , TRPO, REINFORCE
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeyer learning. In <i>International Conferences</i> [2] Carlos Florensa, David Held, Xin <i>Machine Learning (IMCL'18)</i> , page [3] Sébastien Forestier, Yoan Moll <i>arXiv:1708.02190</i> , 2017.	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM hyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>VL'19)</i> , pages 1331–1340, 2019. . Automatic goal generation for r	ased ER, E-UVFA PG-like) PI et, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning.
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeyer learning. In International Conferences [2] Carlos Florensa, David Held, Xint Machine Learning (IMCL'18), paralla [3] Sébastien Forestier, Yoan MoltarXiv:1708.02190, 2017. [4] Tejas D Kulkarni, Karthik Narassi intrinsic motivation. In Advances	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM nyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19)</i> , pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36	Assed ER, E-UVFA PG-like) PI et, IMPALA PO TRPO, REINFORCE IOUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016.
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeyer learning. In International Conferences [2] Carlos Florensa, David Held, Xin Machine Learning (IMCL'18), particular (IMCL'17), particular (IMCL'18), particular (learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM hyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da olume 2017, 2017.	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19)</i> , pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration	Assed ER, E-UVFA PG-like) PI At, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i>
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeyer learning. In <i>International Conference</i> [2] Carlos Florensa, David Held, Xint <i>Machine Learning (IMCL'18)</i> , particular description (IMCL'18), particular description), particular description (IMCL'18), particular description), particular description, In <i>Advances</i> [3] Sébastien Forestier, Yoan Moll <i>arXiv:1708.02190</i> , 2017. [4] Tejas D Kulkarni, Karthik Narasi intrinsic motivation. In <i>Advances</i> [5] Deepak Pathak, Pulkit Agrawal, <i>Machine Learning (ICML'17)</i> , vol. [6] Martin Riedmiller, Roland Hafner Learning by playing solving spars	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM hyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da olume 2017, 2017. -, Thomas Lampe, Michael Neur e reward tasks from scratch. In	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19)</i> , pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration nert, Jonas Degrave, Tom van de V <i>International Conference on Mac</i>	Assed ER, E-UVFA PG-like) PI et, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i> Viele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. <i>hine Learning (ICML'18)</i> , volume 80, pages 4344–4353, 2018.
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeye learning. In <i>International Conferences</i> [2] Carlos Florensa, David Held, Xin <i>Machine Learning (IMCL'18)</i>, paral [3] Sébastien Forestier, Yoan Moll <i>arXiv:1708.02190</i>, 2017. [4] Tejas D Kulkarni, Karthik Narassi intrinsic motivation. In <i>Advances</i> [5] Deepak Pathak, Pulkit Agrawal, <i>Machine Learning (ICML'17)</i>, vol. [6] Martin Riedmiller, Roland Hafner Learning by playing solving spars [7] Sainbayar Sukhbaatar, Zeming Li self-play. In <i>International Conferences</i> 	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM hyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da olume 2017, 2017. Thomas Lampe, Michael Neur e reward tasks from scratch. In in, Ilya Kostrikov, Gabriel Synna ence on Learning Representation	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19</i>), pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration nert, Jonas Degrave, Tom van de V <i>International Conference on Mac</i> aeve, Arthur Szlam, and Rob Fergu <i>Dons, ICLR 2018, Conference Track</i>	ased ER, E-UVFA PG-like) PI et, IMPALA PO , TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i> Viele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. <i>hine Learning (ICML'18)</i> , volume 80, pages 4344–4353, 2018. Is. Intrinsic motivation and automatic curricula via asymmetric , 2018.
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References Cádric Colas, Pierre-Yves Oudeyet learning. In International Conferences Carlos Florensa, David Held, Xin Machine Learning (IMCL'18), partice (IMCL'18), partice (IMCL'18), partice (IMCL'17), volume (I	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM ayang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da blume 2017, 2017. Alexei A Efros, and Trevor Da blume 2017, 2017. Thomas Lampe, Michael Neur e reward tasks from scratch. In in, Ilya Kostrikov, Gabriel Synna ence on Learning Representatio o, Adam Santoro, Victor Baps pent learning. arXiv:1806.01830	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19</i>), pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration nert, Jonas Degrave, Tom van de V <i>International Conference on Mac</i> aeve, Arthur Szlam, and Rob Fergu <i>ons, ICLR 2018, Conference Track</i> et, Yujia Li, Igor Babuschkin, Karl <i>9</i> , 2018.	Ased ER, E-UVFA PG-like) PI tt, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i> Viele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. <i>hine Learning (ICML'18)</i> , volume 80, pages 4344–4353, 2018. Is. Intrinsic motivation and automatic curricula via asymmetric , 2018.
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeye learning. In <i>International Confere</i> [2] Carlos Florensa, David Held, Xir <i>Machine Learning (IMCL'18)</i>, particular description of the second of	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM hyang Geng, and Pieter Abbeel ages 1514–1523, 2018. ard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da olume 2017, 2017. Thomas Lampe, Michael Neur e reward tasks from scratch. In in, Ilya Kostrikov, Gabriel Synna ence on Learning Representatio o, Adam Santoro, Victor Baps pent learning. arXiv:1806.01830	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19)</i> , pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration nert, Jonas Degrave, Tom van de V <i>International Conference on Mac</i> aeve, Arthur Szlam, and Rob Fergu <i>ons, ICLR 2018, Conference Track</i> st, Yujia Li, Igor Babuschkin, Karl <i>Q</i> , 2018.	ased ER, E-UVFA PG-like) PI It, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i> Viele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. <i>hine Learning (ICML'18)</i> , volume 80, pages 4344–4353, 2018. Is. Intrinsic motivation and automatic curricula via asymmetric , 2018.
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeye learning. In <i>International Confer</i> [2] Carlos Florensa, David Held, Xir <i>Machine Learning (IMCL'18)</i>, pa [3] Sébastien Forestier, Yoan Moll <i>arXiv:1708.02190</i>, 2017. [4] Tejas D Kulkarni, Karthik Narasi intrinsic motivation. In <i>Advance</i> [5] Deepak Pathak, Pulkit Agrawal, <i>Machine Learning (ICML'17)</i>, vo. [6] Martin Riedmiller, Roland Hafner Learning by playing solving spars [7] Sainbayar Sukhbaatar, Zeming Li self-play. In <i>International Confer</i> [8] Vinicius Zambaldi, David Rapos et al. Relational deep reinforcem 	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM nyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da olume 2017, 2017. Thomas Lampe, Michael Neur e reward tasks from scratch. In in, Ilya Kostrikov, Gabriel Synna ence on Learning Representation o, Adam Santoro, Victor Baps ient learning. arXiv:1806.01830	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19)</i> , pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration nert, Jonas Degrave, Tom van de V <i>International Conference on Mac</i> aeve, Arthur Szlam, and Rob Fergu <i>Dons, ICLR 2018, Conference Track</i> et, Yujia Li, Igor Babuschkin, Karl <i>Q</i> , 2018.	ased ER, E-UVFA PG-like) PI It, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i> Viele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. <i>hine Learning (ICML'18)</i> , volume 80, pages 4344–4353, 2018. Is. Intrinsic motivation and automatic curricula via asymmetric , 2018. I Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeyer learning. In <i>International Confere</i> [2] Carlos Florensa, David Held, Xint Machine Learning (IMCL'18), pate [3] Sébastien Forestier, Yoan Moll arXiv:1708.02190, 2017. [4] Tejas D Kulkarni, Karthik Narasti intrinsic motivation. In Advance [5] Deepak Pathak, Pulkit Agrawal, Machine Learning (ICML'17), voc [6] Martin Riedmiller, Roland Hafner Learning by playing solving sparss [7] Sainbayar Sukhbaatar, Zeming Li self-play. In <i>International Confere</i> [8] Vinicius Zambaldi, David Rapos et al. Relational deep reinforcem 	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM hyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da olume 2017, 2017. Thomas Lampe, Michael Neur e reward tasks from scratch. In in, Ilya Kostrikov, Gabriel Synna ence on Learning Representatio o, Adam Santoro, Victor Baps ient learning. arXiv:1806.01830	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19</i>), pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration nert, Jonas Degrave, Tom van de V o International Conference on Mac aeve, Arthur Szlam, and Rob Fergu ons, ICLR 2018, Conference Track st, Yujia Li, Igor Babuschkin, Karl 0, 2018.	Assed ER, E-UVFA PG-like) PI tt, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i> Viele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. <i>hine Learning (ICML'18)</i> , volume 80, pages 4344–4353, 2018. Is. Intrinsic motivation and automatic curricula via asymmetric ; 2018. I Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
 IMGEP [3] CURIOUS [1] SAC-X [6] Relational RL [8] ICM [5] Goal GAN [2] Asymmetric self-play [7] References [1] Cédric Colas, Pierre-Yves Oudeye learning. In <i>International Confer</i> [2] Carlos Florensa, David Held, Xir <i>Machine Learning (IMCL'18)</i>, pa [3] Sébastien Forestier, Yoan Moll <i>arXiv:1708.02190</i>, 2017. [4] Tejas D Kulkarni, Karthik Narasi intrinsic motivation. In <i>Advance</i> [5] Deepak Pathak, Pulkit Agrawal, <i>Machine Learning (ICML'17)</i>, vc [6] Martin Riedmiller, Roland Hafner Learning by playing solving spars [7] Sainbayar Sukhbaatar, Zeming Li self-play. In <i>International Confer</i> [8] Vinicius Zambaldi, David Rapos et al. Relational deep reinforcem 	learning progress learning progress auxiliary task - prediction error adversarial goal self-play er, Olivier Sigaud, Pierre Fournie ence on Machine Learning (ICM nyang Geng, and Pieter Abbeel ages 1514–1523, 2018. lard, and Pierre-Yves Oudeye imhan, Ardavan Saeedi, and Jo s in Neural Information Process Alexei A Efros, and Trevor Da olume 2017, 2017. Thomas Lampe, Michael Neur e reward tasks from scratch. In in, Ilya Kostrikov, Gabriel Synna ence on Learning Representation o, Adam Santoro, Victor Baps ient learning. arXiv:1806.01830	memory-ba DDPG, HE HRL, (DD relation ne A3C, ICM GAN, TRF Alice/Bob, er, and Mohamed Chetouani. CURI <i>ML'19)</i> , pages 1331–1340, 2019. . Automatic goal generation for r er. Intrinsically motivated goal osh Tenenbaum. Hierarchical deep <i>sing Systems (NIPS'16)</i> , pages 36 arrell. Curiosity-driven exploration nert, Jonas Degrave, Tom van de V <i>International Conference on Mac</i> aeve, Arthur Szlam, and Rob Fergu <i>Dons, ICLR 2018, Conference Track</i> st, Yujia Li, Igor Babuschkin, Karl <i>D</i> , 2018.	Assed ER, E-UVFA PG-like) PI tt, IMPALA PO TRPO, REINFORCE OUS: intrinsically motivated modular multi-goal reinforcement reinforcement learning agents. In <i>International Conference on</i> exploration processes with automatic curriculum learning. reinforcement learning: Integrating temporal abstraction and 75–3683, 2016. by self-supervised prediction. In <i>International Conference on</i> Viele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. <i>hine Learning (ICML'18)</i> , volume 80, pages 4344–4353, 2018. Is. Intrinsic motivation and automatic curricula via asymmetric , 2018. I Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,